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a b s t r a c t

Econometric models of temperature impacts on GDP are increasingly used to inform global

warming damage assessments. But theory does not prescribe estimable forms of this rela-

tionship. By estimating 800 plausible specifications of the temperature-GDP relationship, we

demonstrate that a wide variety of models are statistically indistinguishable in their out-of-

sample performance, including models that exclude any temperature effect. This full set of

models, however, implies a wide range of climate change impacts by 2100, yielding consid-

erable model uncertainty. The uncertainty is greatest for models that specify effects of tem-

perature on GDP growth that accumulate over time; the 95% confidence interval that accounts

for both sampling and model uncertainty across the best-performing models ranges from 84%

GDP losses to 359% gains. Models of GDP levels effects yield a much narrower distribution of

GDP impacts centered around 1–3% losses, consistent with damage functions of major inte-

grated assessment models. Further, models that incorporate lagged temperature effects are

indicative of impacts on GDP levels rather than GDP growth. We identify statistically signif-

icant marginal effects of temperature on poor country GDP and agricultural production, but

not rich country GDP, non-agricultural production, or GDP growth.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background and motivation

It has long been understood that economic outcomes are related to climate. This climate-economy relationship determines

the scope and magnitude of market impacts from climate change over the next 100 years and beyond. Consequently, an under-

standing of the climate-economy relationship is central to projections of damages from anticipated climate change, and to

policymaking that weighs the benefits and costs of climate change mitigation. Yet estimation of the scope and magnitude of

climate impacts on the economy is hindered by the temporal invariance of climate over relevant time frames and by the corre-

lation of cross-sectional climate variation with other regional heterogeneity that may effect economic performance, including

historical effects of settlement and colonization (e.g., Acemoglu et al. 2002; Easterly and Levine 2003; Rodrik et al. 2004; Dell et

al. 2014).

A recent literature, therefore, employs panel econometric methods to estimate the response of economic outcomes to

weather, which is commonly defined as realizations from distributions of climatic variables, like temperature, wind, and precip-
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itation (Dell et al. 2014; Hsiang 2016; Auffhammer 2018). This literature has estimated economically and statistically significant

effects of weather on a variety of economic outcomes, including crop yields, industrial output, and labor productivity.1 A subset

of this literature also relates weather and weather shocks to economic aggregates like gross domestic product (GDP) (Hsiang

2010; Barrios et al. 2010; Anttila-Hughes and Hsiang 2011; Deryugina 2011; Dell et al. 2012; Hsiang and Narita 2012; Burke et

al. 2015, 2018).

Much of this empirical research is intended to inform estimation of climate change damages and determinations of efficient

climate change mitigation programs (Dell et al. 2014; Deryugina and Hsiang 2014; Hsiang 2016; National Academies of Sciences

2017; Burke et al. 2018). Integrated assessment models (IAMs), commonly used in analysis of climate change mitigation costs

and benefits, rely upon the enumeration and aggregation of relevant, sector-specific impacts (National Academies of Sciences

2017). Given the sparseness of empirical estimates of sectoral impacts around the world, such models often must extrapolate

impacts out of sample. Therefore, growing interest centers on the econometric estimation of climate impacts on economic

aggregates that subsume sectoral effects, obviating the need to fully enumerate and estimate them. The aggregate econometric

approach also complements the enumerative approach by potentially validating estimated magnitudes of damages. However,

economic aggregates such as GDP are not direct welfare measures, and do not reflect non-market values affected by climate

change. These should also be incorporated into welfare analysis.

Moreover, the econometric approach confronts two challenges in estimating aggregate economic impacts of climate change.

First, identification of climate effects from weather variation requires strong assumptions about dynamic processes like adap-

tation and the persistence of idiosyncratic temperature responses amid secular climate change (Dell et al. 2014; Hsiang 2016).

Second, theory does not prescribe specific, estimable, structural relationships between climate and economic outcomes (Dell

et al. 2014; Hsiang 2016; Schlenker and Auffhammer 2018). Researchers, therefore, have made varying assumptions about the

functional forms of these relationships.

For instance, by relating country-level, aggregate per capita economic growth to a log-linear function of temperature and pre-

cipitation, and controlling for country-specific effects and secular trends, Dell et al. (2012), henceforth DJO, estimated that only

poor country growth is harmed by positive temperature shocks. In contrast to DJO, Burke et al. (2015), henceforth BHM, specified

a quadratic relationship between temperature and per capita GDP growth that suggests rich and poor countries alike suffer from

global warming and that both agricultural and industrial output growth are impeded. Employing parametric country-specific

quadratic trends, the preferred model of BHM estimates a globally optimal temperature for GDP growth of 13 ◦C and predicts

global income losses of 23% by 2100 due to unmitigated climate change. The same econometric approach is employed by Burke

et al. (2018) to estimate a cumulative $20 trillion in global damages avoided by 2100 if global warming is limited to 1.5 ◦Celsius

(C) rather than 2 ◦C.

Whereas DJO and BHM each estimate a relationship between temperature and GDP growth, Hsiang (2010), Deryugina and

Hsiang (2014) and Deryugina and Hsiang (2017) postulated a non-linear relationship between temperature and GDP levels.

Hsiang (2010) relied principally upon a linear model to identify statistically and economically significant effects of annual

average temperature on aggregate output and sectoral production in the Caribbean and Central America. His estimation of a

piece-wise linear function relating daily average temperature to annual production indicated production losses occur only on

extremely hot days with average temperatures of 27–29 ◦C. Specifying a similar piece-wise linear relationship between daily

temperatures and GDP levels, Deryugina and Hsiang (2014) and Deryugina and Hsiang (2017) estimated U.S. production losses

at daily average temperatures as low as 15 ◦C.2

Economists have long observed that theory often does not precisely define estimable forms of economic relationships, reserv-

ing to empiricists significant discretion in defining functional forms and selecting conditioning variables.3 The consequences

of that selection for inference have also long been enumerated.4 As Hendry (1980) and Leamer (1983) observed, given that

parameter sensitivity is indicative of specification error, empiricists often endeavor to demonstrate the robustness of parameter

estimates to alternative assumptions. Yet, as Leamer (2010) contends, such sensitivity analyses or robustness checks are, them-

selves, often performed in ad hoc ways. Rigorous model selection tools can be applied in these settings to empirically ground

model selection via processes less dependent upon researcher discretion.

1.2. Summary of methods and results

Thus, this paper systematically assesses the sensitivity of temperature parameter estimates to modeling assumptions and

considers the implications of model uncertainty for estimates of climate change impacts on GDP. It evaluates competing mod-

els in the literature and a range of variants using a rigorous cross validation approach that is commonly employed in causal

1 See for instance Deschênes and Greenstone (2007); Schlenker and Roberts (2009); Schlenker and Lobell (2010); Feng et al. (2010); Jones and Olken (2010);

Lobell et al. (2011); Cachon et al. (2012); Fisher et al. (2012); Dell et al. (2014); Graff Zivin and Neidell (2014).
2 Models relating economic outcomes to annual average temperatures are not directly comparable to those estimating responses to daily average tempera-

tures given presumed non-linearities in the response function.
3 For example, see Friedman (1953); Dhrymes et al. (1972); Cooley and LeRoy (1981); Leamer (1978, 1983); White (1996); Yatchew (1998); Hansen et al.

(2011), and Belloni et al. (2014).
4 See Keynes (1939), Koopmans (1947), Leamer (1978), Leamer (1983), Hendry et al. (1990), Chatfield (1996), and Sullivan et al. (1999), among others.
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inference.5 Models are evaluated according to out-of-sample model fit criteria as is particularly appropriate for models that

are intended to predict future economic outcomes given expectations about future climatic conditions. Moreover, we invoke

the substantial literature on data-driven, predictive model comparison (e.g., White 1996; Diebold and Mariano 1995; Hansen

2005; Hansen et al. 2011) to identify the set of models that are statistically superior to alternatives conditional on prediction

procedures. This approach is standard (e.g., Diebold and Mariano 1995; West 1996), and was employed by Auffhammer and

Steinhauser (2012) in the related context of modeling carbon emissions in the United States.

We use a country-level panel of economic growth, temperature, and rainfall to estimate the global relationship between GDP

and temperature. Eight hundred models are estimated. They vary along four key dimensions: the assumed functional form for

temperature and precipitation, methods of controlling for potentially confounding time trends, the persistence of temperature

effects on GDP as indicated by the choice of GDP growth or levels as the relevant dependent variable, and the inclusion of tem-

perature (and precipitation) lags as covariates. These models are evaluated by several cross-validation techniques to determine

their relative performance, as well as their implications for damages from future warming.

Cross validation and statistical tests of model superiority reveal considerable model uncertainty that implies GDP impacts by

2100 ranging from substantial losses to substantial gains. Estimates of GDP impacts vary considerably more across those models

assuming temperature effects on GDP growth, rather than GDP levels, reflecting the compounding of growth effects over time.

For each cross validation approach, the set of superior models is dominated by levels models, but includes growth models. For

superior growth models, the 95% confidence interval of GDP impacts in 2100 is −84% to +359%, reflecting considerable model

and sampling uncertainty. In contrast, the 95% confidence region for superior levels models is −8.5% to +1.8%, and is centered

around GDP losses of 1–2%. The model preferred by BHM that predicts GDP losses of 23% is excluded from all model sets of

superior predictive ability.

Growth models yield immense uncertainty about global warming impacts. Across just those growth models that specify a

non-linear temperature function, the combined model and sampling uncertainty yield a standard deviation of predicted impacts

equal to 132% of GDP, with model uncertainty comparable in magnitude to sampling uncertainty.6 Models specifying impacts

on GDP levels, not growth, yield far less uncertainty in climate impacts; the standard deviation is equal to less than 3% of GDP for

model, sampling, and combined uncertainty. Considerable growth model uncertainty affords little policy guidance and suggests

caution is warranted when such estimates are incorporated into IAMs (e.g., Moore and Diaz 2015) or used to estimate the social

cost of carbon (Ricke et al. 2018). Levels models, in contrast, are associated with less model uncertainty and project a range of

impacts consistent with damage estimates embodied in leading IAMs.

Non-linear temperature specifications dominate the model sets of superior predictive ability in our prediction procedure.

These include quadratic and cubic temperature functions, as well as temperature splines. These non-linear temperature models,

however, do not perform statistically better in out-of-sample validation than models that exclude temperature entirely. In fact,

the root mean-squared prediction errors of many of these models are not distinguishable to four decimal places, which reflects

the relatively small share of variation explained by temperature. By forecast and backcast cross-validation approaches, models

with any country-specific trends are statistically inferior to those that exclude trends, indicative of overfitting by models that

include them.

Accounting for uncertainty among models of superior performance in our estimation procedure, we find that the marginal

effect of temperature on GDP growth is not distinguishable from zero at annual average temperatures observed in our data. The

marginal effect of temperature on GDP levels is more precisely estimated than the effect on GDP growth, yet there is still a wide

range of temperatures for which the confidence intervals include zero.

We also explore temperature impacts on GDP by country-level income group and by agricultural versus industrial produc-

tion. Among poor countries, we find consistently negative mean effects of temperature on GDP levels, which are statistically sig-

nificant at the 10% significance level above 18 ◦C. Likewise, we find evidence of substantial temperature impacts on agricultural

GDP levels, with a mean impact that is negative above 10 ◦C but statistically indistinguishable from zero effect at conventional

levels of scientific certainty.

We find no statistically significant growth effects among poor countries or within the agriculture sector. Neither do we

find statistically significant evidence of GDP level or growth effects among rich countries or non-agricultural production. These

results are consistent with theories that industrialized countries with greater capacities to adapt to temperature and climate

and economic sectors less exposed to weather and climate are less affected by climate change (Poterba 1993; Mendelsohn et al.

1994; Kahn 2005; Stern 2006; Nordhaus 2008; Tol 2009; Deryugina and Hsiang 2014).

The paper is organized as follows. The next section reviews the literature on the relationship between temperature and

economic aggregates, highlighting the variety of modeling assumptions employed in the literature. Section 3 describes our

method of assessing the impact of these alternative assumptions, and section 4 presents results of the model cross validation

and implications for causal inference and climate damage projections. Section 5 concludes.

5 For example, Friedman (1953); Varian (2014); Kleinberg et al. (2015); Christensen and Edward (2018), Athey (2017), and Athey et al. (2019).
6 Growth models imply a range of impacts that is implausibly large given the overall historical exposure of the economy to temperature. The agricultural

sector, for example, is one of the most exposed to climate change, but represents only a few percent of global income, whereas about two-thirds is services.

Assumptions about the impact of discontinuous, catastrophic climate damages have been considered on the order of tens of percent (Kopits et al. 2014), but

these types of impacts are not reflected in the historic data on which the GDP-temperature relationship is estimated.
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2. Estimating economic responses to climate change

Research on agriculture, human capital, and other specific impacts of climate and temperature provide the microeconomic

foundation for aggregate economic effects. These microeconomic foundations characterize a non-linear relationship between

temperature and economic outcomes, with significant adverse production impacts occurring at daily average temperatures

above about 29 ◦C.7 It also demonstrates the alternative choices researchers have made in modeling the temperature relation-

ship. The most flexible specifications of the micro-foundations literature use binned temperature observations, i.e., temperature

step functions, to flexibly model non-linear relationships; but bin widths vary across these papers. Researchers have also docu-

mented impacts of temperature and climate on human health, conflict, and violence; factors that affect welfare, but less directly

impact aggregate production.

The first estimates of the global welfare impacts of climate change were produced in the 1990s by combining assumptions

about the extent of future warming with scientific evidence of its physical impacts and their valuation (Fankhauser 1994; Nord-

haus 1994; Tol 1995, 2002a,b; Fankhauser 2013).8 Recent statistical approaches to measuring aggregate economic impacts of

climate relate observed economic outcomes to weather (i.e., short-term variations in climate), which varies in the cross-section

and temporally, allowing the use of fixed effects to control for time-invariant region heterogeneity. This strand of the literature

includes Hsiang (2010), DJO, Hsiang and Jina (2014), Deryugina and Hsiang (2014), BHM, and Burke et al. (2018). Though these

papers all relate economic outcomes to temperature shocks, they differ in how they specify the equations used to estimate

these responses. There are three principal model variations we explore: (1) GDP level effects, growth effects, and lag effects; (2)

temperature functional form; and (3) controls for unobserved trends.

GDP Level Effects, Growth Effects, and Lag Effects. There is disagreement in the recent empirical literature as to whether temper-

ature affects the level of economic output or its growth (e.g., see Schlenker and Auffhammer 2018). The modeling choice is not a

trivial one. Growth effects compound over time, whereas level effects do not. Thus, and as we show, predictions of future losses

from climate change vary considerably depending upon whether growth or level models are specified. The micro-foundations

literature has largely related temperature to levels of economic outcomes, not their growth (Dell et al. 2012; Schlenker and

Roberts 2009; Schlenker and Auffhammer 2018; Auffhammer 2018). The temperature impacts it documents, e.g., yield losses

and reduced labor supply, are widely-accepted determinants of GDP. Some econometric models of economic aggregates relate

temperature to GDP levels, as do the IAMs (National Academies of Sciences 2017; Hsiang 2010; Deryugina and Hsiang 2014).

Yet other econometric models, including DJO, BHM, Hsiang and Jina (2014), and Burke et al. (2018) propose GDP growth may be

affected beyond impacts on contemporaneous output.

The recent empirical literature does not provide theoretical foundations to favor models relating temperature to growth

or levels. DJO characterize output as a multiplicative function of population, labor productivity, and exponentiated tempera-

ture. They offer the intuition that temperature may affect investment in institutions, which may affect productivity growth.

BHM propose output is a function of temperature and total productive capacity, which depreciates over time and is rebuilt

by savings. Savings, they assume, are permanently diminished during periods of high temperature and attendant low out-

put. BHM also suggest that the rate of technological change is slowed by diminished cognitive capacity due to temperature

change. These mechanisms are plausible, but have attracted little attention in the growth literature and have scant empirical

support.

Likewise, there is little empirical record and little agreement on the interpretation of that record to advocate for GDP growth

or levels specifications. DJO, for instance, report growth effects of lagged temperature. Whereas they interpret the coefficients

on temperature lags as indicating growth effects, we contend sign reversal on temperature lags is indicative of a temporary

7 See Schlenker and Roberts (2009); Ortiz-Bobea et al. (2018); Graff Zivin and Neidell (2014), and Sudarshan et al. (2015).
8 This approach is embodied in three reduced-form IAMs that have informed the social cost of carbon in the United States (National Academies of Sciences

2017). This enumerative method contrasts with the statistical method employed by Mendelsohn et al. (2000a) and Mendelsohn et al. (2000b) and later Maddison

(2003) and Nordhaus (2006) that inferred climate change costs from variation in economic activity across climates. Central estimates across these early studies

range from a −11.5% loss of global GDP to a slight gain of 0.1% for temperature increases of 2.5–5.4 ◦C relative to pre-industrial levels (Tol 2014). Most models,

including the IAMs used to estimate the U.S. social cost of carbon, predict losses of a few percent of GDP from a few degrees of warming (Greenstone et al. 2013;

Tol 2014; Nordhaus and Moffat 2017). Whereas the enumerative approach of the IAMs accounts for non-market impacts and affords damage estimates that are

traceable to specific mechanisms, it may overlook some channels by which climate change affects the economy, and it may extrapolate impacts out of sample

to heterogeneous regions and production (Dell et al. 2012; Carleton and Hsiang 2016; National Academies of Sciences 2017).
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effect on GDP levels.9,10 Similarly, BHM estimate distributed lag models with 1–5 lags of a quadratic temperature polynomial

to explore the persistence of temperature effects. In none of these BHM models is the cumulative temperature effect on growth

statistically distinguishable from zero. Moreover, as in DJO, lagged temperature effects exhibit sign-reversal, implying transitory

effects of temperature shocks on output.11

We incorporate into our following analysis models that include three lags of the contemporaneous temperature (and precipi-

tation) function. As is later shown, some of these models exhibit out-of-sample performance that is statistically indistinguishable

from some of the most accurate models excluding temperature lags. Lagged temperature effects on GDP growth are shown to

be opposite sign and approximately equal in magnitude to contemporaneous effects further evidencing the transitory nature of

temperature impacts and indicating level effects over growth effects.

Temperature Functional Form. The second dimension along which the climate-economy literature varies is specification of the

function relating temperature to economic outcomes. This choice also dramatically affects the magnitude of damage estimates.

The preferred model of DJO specifies a linear temperature effect, implying that a temperature shock affects economic outcomes

similarly regardless of the mean from which temperatures deviate.12 Like Hsiang (2010) and Deryugina (2011), DJO also imple-

ment more flexible, piece-wise linear functions of temperature that accommodate asymmetric effects of small increases and

decreases in temperature relative to an optimum.13

BHM favor a quadratic relationship between temperature and growth that allows warming to boost growth in countries

with cold climates and impede growth in hot countries. Using data substantially similar to DJO, they estimate statistically and

economically significant growth effects of temperature shocks in rich and poor countries alike, and across both agricultural and

industrial production.14 The quadratic specification estimated by BHM identifies an optimal annual average temperature for

GDP growth of 13 ◦C from which deviations in either direction generates changes in growth of equal magnitude but opposite

sign. The quadratic temperature relationship is more flexible than the linear relationship specified by DJO. Yet it imposes a

symmetry of growth effects due to temperature deviations away from the optimum that abstracts from the micro-foundations

evidence.15 BHM also consider higher-ordered polynomials of temperature, as well as restricted cubic splines with 3–7 knots.16

Controls for Unobserved Trends. The third major dimension of model heterogeneity within the existing literature is the choice

of controls for trending unobservables. Theory offers little guidance in controlling for trending unobservables, and the extant

literature appears to take a fairly ad hoc approach to modeling trend heterogeneity. Because of heterogeneity in endowments,

institutions, and history, countries or regions are likely to have varying growth capabilities. The parametric trends employed

9 This is particularly true given serial correlation in country average annual temperatures that implies a relatively hot year is typically followed by another

relatively hot year, e.g., due to El Nino-Southern Oscillation and other decadal oscillations (Hsiang 2010). In BHM’s data, the first lag and contemporaneous

temperature have a correlation coefficient of 0.5. This correlation is depicted for each country in Appendix Fig. A1. Contemporaneous temperature and more

distant lags are also positively correlated, though, as expected, the correlation declines with lag distance.
10 DJO interpret their lagged-effects models differently than we do because they assume a transitory contemporaneous temperature effect on GDP growth and

a temperature effect on GDP level. See their equations (2)-(3). This assumption is strong, and seems counter to the intuition they provide—that temperature

may affect institutions that affect growth. If investment in institutions is low relative to some counterfactual during a temperature shock, then institutional

investment remains low indefinitely in subsequent periods unless an offsetting temperature shock occurs. Thus, a temperature shock that affects GDP growth

should affect growth in subsequent periods, producing lagged temperature effects that exhibit common sign and magnitudes to the contemporaneous effect.

For example, if we drop their levels effect entirely (set 𝛽 = 0) but allow for a lagged effect on productivity growth (𝛾2 < 0) in addition to the existing

contemporaneous effect (𝛾1 < 0), the growth rate equation would become git = gi + 𝛾1Tit + 𝛾2Tit−1; this result features a common sign on contemporaneous

and lagged temperature, contrary to DJO’s results in which the signs differ. The only conceptual ways to find differing signs as DJO estimate is with the existence

of a levels effect, or, more perversely, a growth effect that reverts itself with one lag. Further, if there are no levels effects, then the sum of all temperature

coefficients should be at least as large as the magnitude of the contemporaneous effect. Yet none of the lagged temperature coefficients in DJO models is

statistically significant at conventional levels. All are small in magnitude, and the sum of coefficients is smaller in magnitude than the contemporaneous effect.

All of this suggests temperature effects on levels rather than growth, contrary to the interpretation of DJO.
11 BHM do not report these coefficients in their main text or supplementary information. We produced the coefficients and their standard errors using BHM

replication data and code. The addition of temperature lags to the models that perform best in our model cross validation also yields little evidence of persistent

temperature effects.
12 The model implies that contemporaneous growth among poor countries declines by 1.4 percentage points annually for each 1 ◦C of warming.
13 Cautioning against over-interpretation due to data reliability concerns, they report coefficients that characterize approximately linear effects that are sta-

tistically indistinguishable from zero for poor countries across all temperature bins. For rich countries, temperature coefficients are approximately zero and not

statistically significant, except in the range of 15–25 ◦C, within which coefficients are positive and barely significant.
14 BHM impose a globally quadratic relationship, not to be confused with a within-country quadratic relationship. As shown by McIntosh and Schlenker (2006),

these two assumptions are conceptually different on a fundamental level, and, therefore, have significant practical implications. For example, a global quadratic

implies a single centering point (here, “GDP-maximizing temperature”) for all countries and years, compared to many country- and year-specific centering

points.
15 BHM state conditions under which the annual aggregation of daily temperatures used in some of the micro-foundations literature (e.g., Schlenker and

Roberts 2006; Graff Zivin and Neidell 2014; Sudarshan et al. 2015; Stevens 2017) yields a temperature response curve that is concave, smoother, and charac-

terized by a lower optimum temperature than the micro responses. It is also important to note that some of the micro-foundations literature relates outcomes

to daily maximum temperature, which is characterized by a higher mean than daily, monthly, or annual average temperatures that incorporate temperature

readings from relatively cool nighttime periods. However, the concave relationship BHM define in their equation (1) does not impose symmetry. See their

Fig. 1(f).
16 These alternative specifications all confirm a concave relationship between temperature and growth, but the peaks of the concave relationships vary across

specifications in non-trivial ways, typically implying GDP-maximizing temperatures greater than 13 ◦C.
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Table 1

Model assumptions of climate-economy literature.

Model Specifications

Dependent Variable Temperature Function Country FEs Year FEs Region X Year FEs Time Trend Polynomial

Dell et al. (2012) Growth Linear • • •
Burke et al. (2015) Growth Quadratic • • 3

Hsiang (2010) Levels Piecewise linear • • • 2

Deryugina and Hsiang (2014) Levels Piecewise linear • •
Hsiang and Jina (2014) Growth NA • • 2

Burke et al. (2018) Growth Quadratic • • 3

Notes: Table includes key modeling assumptions for select studies of the climate-economy literature. Dependent variables are either GDP levels or GDP

growth. Time trend polynomials are of GDP levels.

by BHM and Hsiang and Jina (2014) permit country-level heterogeneity, but constrain the functional form of country trends.17

Such parametric trends can result in over-fitting, as we demonstrate they do in this setting.18

Fixed effects, in contrast, flexibly and non-parametrically control for trends, but they do not admit country-specific trends.19

Models like DJO that are saturated with fixed effects lend credible causal inference as they are robust to many sources of omitted

variables bias, but they may also absorb variation necessary to identify some relationships (e.g., Fisher et al. 2012; Deschênes

and Greenstone 2012).20 ,21 In the present context, saturation of fixed effects or parametric time trends can both lead to this

problem.22

Table 1 summarizes the varying assumptions of prominent papers in the climate-economy literature along key dimensions.23

The cross validation exercise described in the subsequent section considers the sensitivity of temperature parameters to mod-

eling assumptions along these dimensions.

3. Data and methods

Given the model uncertainty evident in the growing climate econometrics literature, empiricists must make choices about

functional forms and inclusion or exclusion of controls. Such model ambiguity is important to the extent that outcomes of

interest differ markedly across alternative empirical models, yielding substantial model uncertainty. In the following sections,

we assess the performance of alternative models and the magnitude of model uncertainty by employing cross validation in

the spirit of Athey (2017). Similar to Athey et al. (2019), which introduces ensemble methods to causal inference, alternative

models are evaluated according to their out-of-sample predictive abilities. This approach is also conceptually similar to that of

Auffhammer and Steinhauser (2012), which considers model uncertainty in CO2 emissions forecasts.

3.1. Model specifications

The degree to which the data recommend a particular relationship between temperature and GDP is evaluated using stan-

dard model cross-validation techniques that fit the parameters of specific models using only a subset of available historical data.

The predictive performance of alternative models is then assessed on the remainder of the historical data. We consider the per-

formance of the models preferred by BHM and DJO, the only other global econometric assessments of the GDP-temperature rela-

tionship, as well as 799 variants that incorporate alternative functional forms for the temperature and precipitation responses

and varying controls for unobserved trends. We also evaluate models that reflect alternative assumptions about the persis-

17 BHM use country fixed effects to control for time-invariant country heterogeneity and also use a set of year fixed effects to control for global trends in growth.

Rather than controlling for regional or country-type (e.g., poor) trends non-parametrically as in DJO, BHM introduce a parametric country-specific quadratic

time trend. Because the dependent variable in their regressions, growth, is the first derivative of income, their quadratic trend implies a country-specific cubic

polynomial in income levels. BHM report that estimation results look similar with only a linear trend in growth. However, as we show in this paper, estimated

GDP impacts vary considerably across alternative specifications. Hsiang and Jina (2014) include a linear country-specific time trend in estimating the relationship

between economic growth and cyclone exposure in the Caribbean. This imparts a quadratic time effect in levels of production, similar to Hsiang (2010). They

also include year fixed effects to flexibly control for common trends and country fixed effects to control for time-invariant heterogeneity.
18 Removing the country-specific quadratic time trends from BHM’s specification as well as adding them to DJO’s specification changes the sign of the estimated

impacts of warming on GDP in 2100, as shown in Table A1.
19 Deryugina and Hsiang (2014) exclude parametric time trends in estimating the production responses of U.S. counties as a flexible function of temperature.

They use county and year fixed effects to control for common trends and time-invariant county heterogeneity.
20 DJO employ country fixed effects, year fixed effects interacted with regional indicators, and year fixed effects interacted with an indicator for countries that

are poor when they enter the data. “Poor” is defined as per capita GDP below the country median at the earliest period recorded. This saturates the model with

fixed effects to non-parametrically control for unobservables. It is robust to region-specific time trends that might be unique to rich or poor countries.
21 As discussed by Fisher et al. (2012), oversaturation of fixed effects can amplify attenuation bias in the presence of measurement error. Too many controls

will absorb most of the variation in the data, leaving measurement error to play a larger role in the remaining identifying variation.
22 DJO include 300 region-year fixed effects that BHM do not, whereas BHM include 332 time trend variables not included in DJO.
23 Hsiang (2010) includes country and industry-specific quadratic time trends in his models of the production responses to temperature change in 28

Caribbean-basin countries, as well as industry-region-year and industry-country fixed effects. Because GDP growth is the first derivative of income levels,

the quadratic time trend in Hsiang (2010) is analogous to a linear time trend in a growth model.
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tence of temperature effects on GDP, that is, whether temperature affects GDP levels or growth, and whether temperature and

precipitation lags affect outcomes.

The specifications we consider take the following form for country i in region r during year t:

Δ ln(GDPi,r,t) = 𝛽′
0
Xi,t + 𝛽′

1
Xi,t−1 + 𝛽′

2
Xi,t−2 + 𝛽′

3
Xi,t−3 + 𝛽′

4
Xi,t−4 + 𝛼i + 𝜆r,t + hi(t) + 𝜀i,t, (1)

where GDPi,r,t is GDP per capita, 𝛼i are country fixed effects, 𝜆r,t are alternative time fixed effects, and hi(t) are alternative

time trends. The Xi,t term is a vector representing functions of the levels of temperature and precipitation. Focusing on the

temperature component of Xi,t , this includes functions of annual temperature that are alternatively excluded or specified as a

linear, quadratic, or cubic polynomial, or as a cubic spline in temperature (and analogously for precipitation). The Xi,t−𝓁 terms

are 𝓁-order lags of these functions.24 The temperature variable in Xi,t measures average annual temperature in degrees C. The

precipitation function is similarly varied across specifications, where the primitive variable measures cumulative annual rainfall

in millimeters. An idiosyncratic error, 𝜀i,t is permitted to be correlated within countries across time and within years across

countries.25

Time fixed effects (𝜆), which control for trending unobservables, are modeled in two ways. First, we consider simple year

fixed effects (as in BHM), which allow for secular trends, but do not account for country or region-specific trends in GDP growth.

Second, we consider more flexible region-year fixed effects (as in DJO and Hsiang, 2010), which admit distinct GDP growth

shocks across regions.26 Identification comes from intra-region variation in temperature shocks. Country-specific time trends

are also included in some specifications, including polynomials of degree 1–3 for hi(t). BHM prefer quadratic trends in growth,

which constitute cubic trends in GDP, while Hsiang (2010) and Hsiang and Jina (2014) adopt linear growth trends. All models

that we evaluate include the 𝛼i country fixed effects.27

Because GDP (in levels) is a non-stationary series, proper inferences over a levels effect requires that we specify a GDP-level

response to temperature in first differences. This specification can be derived as a special case of equation (1).28 Hence, the

levels-versus-growth distinction can be interpreted as special cases of the 𝛽𝓁 parameters in equation (1). For example, if the

response of (log) GDP levels is thought to be a quadratic function of contemporaneous temperature (and not its lags), then

denoting temperature as xi,t (so Xi,t = (xi,t, x2
i,t
)) we have

ln(GDPi,r,t) = 𝛽′
0
Xi,t + · · ·

= 𝛽0,1xi,t + 𝛽0,2x2
i,t + · · · ,

then the first-differenced, stationary, and estimable relationship is:

Δ ln(GDPi,r,t) = 𝛽0,1Δxi,t + 𝛽0,2Δ[x2
i,t] + · · ·

= 𝛽′
0
ΔXi,t + · · ·

= 𝛽′
0
Xi,t − 𝛽′

0
Xi,t−1 + · · · ,

which uses growth rates (log-differences of per capita GDP) as the dependent variable. The quadratic differenced temperature

term is the change in temperature-squared, which we note is conceptually very different from the squared change in temper-

ature, i.e., (Δxi,t)2. As the last two equations show, this data-generating process can be estimated by regressing growth on the

24 We use four-knot splines, with knots placed at the four interior ventiles of the temperature data: (11 ◦C, 18 ◦C, 23 ◦C, and 26 ◦C), corresponding to the 20th,

40th, 60th, and 80th percentiles of annual temperature observations. The knots for the spline in precipitation are defined analogously.
25 Following BHM and DJO, and except where specified, errors are clustered by country and year or region-year corresponding to the fixed effects specified

in the models. A substantial literature investigates the time series properties of global surface temperatures, and though consensus is thus far elusive, we note

that Kaufmann et al. (2010) concludes that surface temperature shares a stochastic trend with radiative forcing, and that this implies correlation of errors across

years. We investigate the implication of this correlation for the standard errors on temperature coefficients in our regression models. We find that standard

errors tend to increase when clustering across time in five-year blocks. P-values are not substantially different, and inferences are virtually unchanged. These

results are available from the authors upon request.
26 We adopt the DJO specification of regions, as follows: Middle East/North Africa, Sub-Saharan Africa, Latin America and Caribbean, Western Europe and

offshoots, Eastern Europe and Central Asia, and Asia and Pacific Islands. See the DJO appendix for a full list of countries.
27 Estimation with fixed effects controls flexibly for unobservables that may confound identification of temperature effects. The inclusion of fixed effects

permits identification only from deviations from group-specific means. That is, we identify effects of temperature changes relative to, for instance, country-

specific means. The inclusion of fixed effects precludes identification of responses to absolute temperatures. Though we do not include in our main analysis any

models that omit country or year fixed effects, we nevertheless explore the sensitivity of marginal temperature effects to their inclusion of exclusion. For each

model in the union of model confidence sets, we estimate the difference in marginal temperature effects between baseline models that include fixed effects and

the analogous models that exclude fixed effects. These differences are estimated for 1000 bootstrapped samples for each model, yielding confidence regions

depicted in Fig. A4. As shown, we do not identify statistical differences across models that include or exclude the FEs of the baseline models at even the 50%

significance level. Because of the potential bias in estimated temperature effects from models that exclude fixed effects, we are hesitant to conclude from this

analysis that absolute and relative temperatures affect economic outcomes similarly.
28 While BHM (and DJO) note the non-stationarity concern and, hence, the need to take first differences, they only take first differences in the left-hand side of

the equation, GDP, without taking first differences in the right-hand side (temperature and precipitation). Consequently, their estimated models are not directly

derived from their conceptual models.
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corresponding first-difference of the specified temperature response, i.e., ΔXi,t , or equivalently, by using specification equation

(1) under the constraint that 𝛽1 = −𝛽0 and 𝛽2 = 𝛽3 = 𝛽4 = 0.

The models preferred by BHM and DJO are also variants of equation (1). BHM regress log-GDP growth on a quadratic of

temperature and precipitation, year and country fixed effects, and country-specific quadratic trends. DJO specify log-GDP growth

as a function of temperature and country, region-year, and poor-year fixed effects.29

In total, we evaluate 800 possible specifications resulting from the following modeling choices and parameter restrictions in

equation (1):

1. Terms in the weather vector Xi,t:

• Temperature function (5 forms): excluded, 1–3◦ polynomials, or spline;

• Precipitation function (5 forms): excluded, 1–3◦ polynomials, or spline;

2. GDP growth versus level effect (4 forms):

• Growth, no lags: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0;

• Growth, with three lags: 𝛽4 = 0;

• Level, no lags: 𝛽0 = −𝛽1 and 𝛽2 = 𝛽3 = 𝛽4 = 0;

• Level, with three lags: 𝛽0 + 𝛽1 + 𝛽2 + 𝛽3 + 𝛽4 = 0;30

3. Time and region controls (8 forms):

• Time fixed effects (2 forms): simple year (BHM-style) or region-year (DJO-style); and

• Country-specific time trends (4 forms): none and 1–3◦ polynomials.31

3.2. Data

Models are estimated using the same data employed by BHM. Specifically, we use the 2012 World Development Indicators

(World Bank 2012) country-year panel of real annual GDP per capita for 166 countries from 1960 to 2010. The data include 6584

country-year observations.32 Also as in BHM, we use Matsuura and Willmott (2012) gridded, population-weighted average

temperature and precipitation data aggregated to the country-year level. Because we estimate a subset of models with three

temperature (and precipitation) lags and because estimation is constrained by the historical extent of the GDP series, estimation

proceeds over approximately 4% less data than in BHM’s main specification.

While only GDP, temperature, and precipitation data are used for estimation, we also forecast the GDP impacts of the alterna-

tive parameter estimates using the same method as BHM. As in BHM, projections of population and economic growth are drawn

from the Shared Socioeconomic Pathways (O’Neill et al. 2014) scenario 5 (SSP5). For comparison to BHM, we use the represen-

tative carbon pathway RCP8.5 as a benchmark scenario of unmitigated future warming (van Vuuren et al. 2011). It represents

the ensemble average of all global climate models contributing to CMIP5, the Coupled Model Intercomparison Project phase

2010–2014 that informed the fifth assessment report of the Intergovernmental Panel on Climate Change.33 RCP8.5 corresponds

to an expected increase of 4.3 ◦C in global mean surface temperature by 2100 relative to pre-industrial levels (Stocker et al.

2013).

3.3. Cross validation techniques

Given theoretical ambiguity about which econometric models correctly capture the data generating process, model perfor-

mance is a useful criterion for model selection. As Hsiang (2016) notes, the parameters empirically recovered in climate econo-

metric models are “put to work” in order to “inform projections of future outcomes under different climate scenarios.”34 Conse-

quently, the out-of-sample prediction properties of models are arguably the performance characteristics of primary importance.

In-sample fit criteria are prone to selecting over-fitted models, particularly as high-ordered polynomials of covariates are

introduced in some models (Chatfield 1996). Commonly reported statistics, like adjusted R2, Akaike Information Criterion (AIC),

and Bayesian Information Criterion (BIC) assess in-sample model fit with parametric penalties for the inclusion of weakly cor-

29 Poor-year fixed effects are interactions of year indicators and an indicator for whether a country was poor when it entered the data, defined as per capita

GDP below the median.
30 A model where the level of GDP is affected by Xi,t corresponds to a first-differenced model with three lagged first differences, which in turn corresponds

to a case of Eq. (1) where the sum of the levels effects nets to zero: 𝛼′
0
ΔXi,t + 𝛼′

1
ΔXi,t−1 + 𝛼′

2
ΔXi,t−2 + 𝛼′

3
ΔXi,t−3 = 𝛼′

0
Xi,t + (𝛼1 − 𝛼0)′Xi,t−1 + (𝛼2 − 𝛼1)′Xi,t−2 +

(𝛼3 − 𝛼2)′Xi,t−3 − 𝛼′
3
Xi,t−4 .

31 All time trends are referenced according to the order of the polynomial as it would appear in the growth model, i.e., Eq. (1). Hence, a “linear” time trend

enters a GDP growth equation as a linear trend and corresponds to a quadratic time trend in GDP levels.
32 The panel is not balanced because the data series is not complete for the full period for some countries. In particular, some countries are added to the series

post-1960.
33 See http://cmip-pcmdi.llnl.gov/.
34 For instance, such parameter estimates can be used to generate estimates of the net present value of future damages from emitting a ton of greenhouse

gases. These estimates of the social cost of carbon are used to evaluate the benefits of carbon reductions (National Academies of Sciences 2017).
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related covariates. Each has flaws (Green 2012). Therefore, we employ model cross-validation (CV) to assess the performance

of alternative models of the GDP and temperature relationship. By training the model over a subset of the data (the train-

ing, or estimation set), and assessing its predictive accuracy on a hold-out sample (the test set), the CV approach is expressly

non-parametric and avoids the ad hoc penalties of alternative, in-sample measures of model performance (Stone 1974; Snee

1977).35 Out-of-sample validation is not a new approach, and the literature has a rich history (e.g., Diebold and Mariano 1995;

West 1996). In a study related to climate change specifically, Auffhammer and Steinhauser (2012) used such an approach to

evaluate competing models for CO2 emissions forecasts. Athey et al. (2019), likewise, use out-of-sample predictions to assign

model weights in an ensemble approach to causal inference in panel data settings characterized by model ambiguity.

We undertake cross validation of 800 models using three CV methods that divide data into distinct training and test sets.

These three methods are: forecast, backcast, and K-fold CV. Forecast CV is implemented by dividing the historical data into

training sets of early data and testing on later data.36 This is a standard and intuitive approach for evaluating the out-of-sample

performance of statistical models of time series data (e.g., see Raftery et al. 2017 and Athey et al. 2019). Backcast CV is similar

to forecast CV, but implemented by training on the most recent data and testing on early data.37 Both forecast and backcast

CV approaches explicitly account for the time-series nature of the data. In contrast, K-fold CV proceeds by dividing the data

randomly into K groups and iteratively training the model K times on
K−1

K
of the data. The model estimated in each iteration is

tested on the remaining
1

K
of the data.38 We implement K-fold CV for completeness and to avoid exercising researcher discretion,

even though K-fold CV ignores the time-series nature of the data and yields an optimistic estimate of model fit if data are serially

correlated. K-fold CV also does not extrapolate out of sample where over-fitted models perform poorly.

When econometric models include time fixed effects, cross validation methods do not generate parameter estimates for fixed

effects appearing in test data that do not appear in training data. For example, a model estimated on 1981–2000 data will have

no estimated fixed effect for the year 2001 that appears in a forecast CV test set.39 Auffhammer and Steinhauser (2012) address

this problem by estimating a linear trend in the fixed effects of the trained model and predicting on test data using extrapolated

fixed effects.

We adopt a different approach. For forecast and backcast CV, we remove fixed effects from the models prior to estimation by

demeaning both the dependent and explanatory variables. This results in precisely the same coefficient estimates on the remain-

ing parameters, such as the coefficients on temperature. We demean GDP growth and all explanatory variables (temperature,

temperature squared, precipitation, precipitation squared, the country-specific time trend polynomials, etc.) by the fixed effect

groups. This involves demeaning by both country and year or region-year before implementing the CV.40 Because we remove

more variation from the data prior to estimation for those models that include region-year fixed effects, we implement the CV

procedures separately for these models. Consequently, we do not assess whether relative performance differences of models

with year fixed effects versus region-year fixed effects are statistically different under the forecast or backcast CV approaches.

However, we can do so in K-fold CV where estimating year fixed effects is feasible.

In summary, each model is estimated iteratively on separate training sets, generating estimated model parameters governing

the temperature, precipitation, and time trend functions in Eq. (1). Then predicted values for the test set are computed by

applying these estimated parameters to the observed independent variables in the test set (data which were not used to estimate

the model) as follows

Predicted Demeaned Growthi,r,t = 𝜒 +
4∑

𝓁=0

𝛽𝓁Xi,t−𝓁 + ĥi(t) (2)

35 See also Arlot and Celisse (2010) for a more recent survey.
36 We implement forecast CV rolling estimation windows of approximately 20 years: 1964–1985, 1971–1990, 1976–1995, 1981–2000, and 1986–2005. Test

windows of five years immediately follow each estimation window. (The first window, 1964–1985, is slightly longer than 20 years to hold the test window

fixed at five years across all implementations of the CV.) The fixed, rolling estimation windows are employed in order to implement the MCS procedure for

nested models. See Hansen et al. (2011) and Elliott and Timmermann (2016). Short test windows are deliberately employed to be conservative in discerning the

performance of flexible-time-trend models. Even amid short test windows, these models perform poorly relative to models that exclude flexible trends. Longer

test windows would exacerbate their prediction errors. Athey et al. (2019) also use short forecast windows. For all cross-validation methods, we drop countries

with fewer than 10 years of data in the training set to avoid bias in the specification of flexible time trends.
37 Backcast CV estimation windows are 1969–1988, 1974–1993, 1979–1998, 1984–2003, and 1989–2010. Test windows of five years immediately precede

each the first year of each estimation window. (The last window, 1989–2010, is slightly longer than 20 years to hold the test window fixed at five years across

all implementations of the CV.)
38 We set K = 5, as is common in the literature. Thus, a given model is estimated each time using 4/5 of the data, and its accuracy is tested on the remaining

1/5 (Geisser 1975). This process is repeated 5 times, so that every observation is used in a test set exactly once. K-fold CV is conceptually similar to leave-one-out

CV, but less computationally intensive. Using multiple splits avoids the randomness inherent in splitting the data only once (Opsomer et al. 2001). The random

sampling to divide the observations is not block sampled because doing so would make it impossible to estimate certain coefficients such as country-specific

time trends. In the event a training set incorporates no observations for a given country, observations for that country are omitted from the test set.
39 This is primarily a problem for forecast and backcast approaches; in K-fold CV individual years are not systematically dropped from the training set, and all

parameters can be estimated.
40 Because the panel is not balanced, simply demeaning first by country and then by year does not produce a demeaned dataset. Therefore, we demean the data

by employing the method of alternating projections. In particular, we use the demeanlist() function from the R package lfe. Importantly, all polynomials and

spline bases are computed prior to the demeaning process, including the first difference of these bases for the GDP levels specification. Failure to do so would

result in different coefficient estimates for the temperature relationship (among others) under the demeaning and indicator variable approaches.
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The estimated constant 𝜒 , weather coefficients 𝛽𝓁 , and country-specific time trend functions ĥi(·) all vary across model specifi-

cations and training sets. The left-hand side is labelled predicted demeaned growth because that is the dependent variable in the

model fit (that is, after the removal of the fixed effects: Demeaned Growthi,r,t = Δ ln(GDPi,r,t) − 𝛼i − 𝜆r,t).
41 The out-of-sample

accuracy of this prediction is then evaluated by calculating its root mean square error relative to observed demeaned growth.

3.4. Model confidence sets

Given the common CV performance across many models that we demonstrate in Section 4, a determination of which models

are statistically significantly superior to alternatives in their predictive ability is not obvious. Therefore, and given ex ante theo-

retical ambiguity about estimable relationships, we employ the model confidence set (MCS) procedure of Hansen et al. (2011),

which iteratively eliminates from consideration models that are inferior to alternatives in their predictive ability at the 95%

confidence level. Models remaining under consideration are statistically indistinguishable in their performance. The procedure

considers a null hypothesis that model losses (prediction errors) are equivalent across models. If the null is rejected, an elim-

ination rule removes a model from consideration and the null is tested again. The procedure iterates until the equivalence of

model losses cannot be rejected. Because this procedure explicitly compares all models simultaneously, it is more extensive and

comprehensive than traditional approaches to model selection, such as running an F-test for each model individually (essen-

tially comparing each individual specification to a null specification) or running a Davidson-MacKinnon J-test (which considers

pairwise model comparisons).

Like Hansen et al. (2011), we employ a decision rule that iteratively eliminates the model with the greatest standardized

loss relative to the average of models remaining in the consideration set, denoted by the test statistic Tmax,. Because we likely

remove more variation from those models with more saturated fixed effects due to the demeaning procedure, i.e., the region-

year models, such models are likely advantaged in tests of predictive ability. Hence, forecast and backcast CV MCSs are separately

estimated for models that include year or region-year fixed effects. We cannot determine whether differences in the relative

performance of models along this dimension are statistically significant in forecast and backcast CV.

3.5. Projections of GDP impacts of climate change

We project the impact of expected warming on global GDP by 2100 using the RCP8.5 climate projection as a benchmark

of unmitigated climate change and SSP5 for projections of moderate to strong baseline GDP and population growth, similar to

BHM (O’Neill et al. 2014). Neither we nor BHM forecast baseline GDP using the econometric model. Country-level projections

of economic growth, population growth, and climate warming are combined with the estimated relationship between GDP

growth and temperature to predict changes in future growth rates for each country and year. Given the estimated concave

growth-temperature relationship, baseline GDP growth is incremented in cold countries as warming occurs and decremented

in hot countries. We employ the methodology and data of BHM’s preferred projection. For a more detailed description of this

projection, see section D of BHM’s supplementary information.

Following BHM, we allow per capita GDP to evolve according to:

GDPi,t = GDPi,t−1 ×
(

1 + 𝜂i,t + 𝛿i,t

)
,

where 𝜂i,t is the economic growth rate absent temperature change from the SSP. The term 𝛿i,t is the temperature-induced

increment (or decrement) to growth due to temperature changes from country-specific recent historical averages. Specifically,

it evolves according to 𝛿i,t = f (Xi,t+) − f (Xi), where Xi,t+ is projected temperature beyond 2010 and Xi is country-specific average

temperature from 1980 to 2010. The function f(X) is the estimated temperature function (polynomial or spline) of temperature

from Eq. (1). Those estimated functions for all 800 specifications are shown in appendix Fig. A5. These temperature functions

are assumed to be constant to 2100, and, thus, do not admit adaptation to temperature changes.42 Temperature deviations are

estimated by assuming a linear increase from the historical average to country-specific temperature projections in 2100 from

the RCP8.5.

BHM demonstrate the uncertainty of GDP climate impacts by bootstrapping the estimation of the growth-temperature rela-

tionship. In their preferred specification they find that approximately 30% of bootstrapped simulations yielded positive global

GDP gains from projected warming in 2100 even though the central estimate was a 23% loss. This demonstrates the substantial

sampling uncertainty over future climate change damages attributable to uncertainty over parameters. We also estimate the

magnitude of sampling uncertainty, but we uniquely relate it to model uncertainty, i.e., that uncertainty attributable to ambigu-

ity about the correct model. As reported in the next section, model uncertainty is shown to rival even the substantial sampling

41 This is true in forecast and backcast CV due to the inability to estimate out of sample fixed effects. In K-fold CV, we can estimate the fixed effects directly, so

in that case we do not demean by 𝛼i and 𝜆r,t ex ante, and those terms are then included in the prediction calculation in equation (2).
42 BHM estimate their preferred temperature function separately for the first half and for the second half of the data. They find no statistical difference in the

mean temperature response across these subsamples, and, therefore, conclude there is no evidence of adaptation that should be incorporated into projections

of the future effects of climate change. We similarly compare estimates for the first half and for the second half of our data and for all models that are included

in an MCS. Fig. A3 reports the confidence region for the difference in parameter estimates derived from the early subsample and the late subsample for 1000

bootstrap samples from each early and late subsamples of the data. Like BHM, we find no evidence of parameter heterogeneity across these time periods.
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uncertainty BHM estimate, unless one focuses solely on models that relate non-linear temperature to GDP levels.

4. Results

This section presents the results of the cross validation exercise, comparing the cross-validated root-mean-square errors (CV

RMSEs) across all 800 models. We then illustrate the estimated relationships between GDP and temperature across all models

favored in the previous literature and those favored by cross validation. The estimated GDP impact in 2100 under each model

specification is illustrated for the benchmark scenario of unmitigated warming (i.e., RCP8.5). Finally, impact heterogeneity across

rich and poor countries and across agricultural and non-agricultural production is explored.

4.1. Model cross-validation

Employing cross validation by three distinct methods across 800 models results in 2400 estimates of RMSE. The RMSE for

each model i is calculated as RMSEi =
√

n−1
∑

te
2
i,t
=
√

n−1
∑

t(Yi,t − Ŷ i,t)2, using the actual and predicted values from the test

set, Yi,t and Ŷ i,t , respectively.

4.1.1. Forecast CV

Forecast cross validation reveals that dozens of alternative models are characterized by similar predictive ability as summa-

rized by RMSE. These results are reported in Fig. 1, which depicts for each of 800 models the estimated RMSE and the associated

95% confidence interval. The figure is split into two panels; the top panel shows models with year fixed effects, and the bottom

panel shows the models with region-year fixed effects. The area below the depicted RMSEs indicates by gray cell color the char-

acteristics of the respective model specifications. For instance, reading from left to right, the first half of models in each panel are

characterized by GDP level effects, and the latter half are those estimating growth effects, as indicated by the cell colors in the

bottom two rows of the specification chart. For legibility, the y-axis in the figure is truncated at 0.12 (twice the sample standard

deviation) because some models with high order time trends exhibit very high RMSEs.

The green dots in the bottom panel indicate RMSEs for those models with region-year fixed effects that appear in the MCS.

Blue dots in the top panel denote RMSEs of the year fixed effect models appearing in the MCS. The red dot indicates the RMSE of

the BHM model (which is not in the MCS), and black dots depict RMSEs of all remaining models.43 The figure demonstrates that

63% of models are characterized by RMSEs above the sample standard deviation of 0.0603, suggesting a simple prediction equal

to mean GDP growth is more a fccurate than many of these models. As shown later in this section, common predictive ability

yields a large set of models of superior predictive ability that is statistically indistinguishable across models within the set.

This, combined with sensitivity of projected GDP losses from warming, implies tremendous model uncertainty that is further

considered later in this section.

Prediction errors are similar across level and growth models and models that include year or region-year fixed effects if

county time trends are excluded. Models that include time trends, however, perform poorly in cross validation relative to models

that exclude them. This is particularly true for models that include region-year fixed effects, and it is indicative of over-fitting.44

In fact, forecast CV prediction errors are minimized by excluding time trends irrespective of other modeling assumptions, as

indicated by the 9th row of the specification chart in Fig. 1 (labelled “Linear Trend”). RMSE increases as higher-order polynomial

trends are included. Among models that exclude trends, RMSE varies from 0.0497 to 0.0535. Models with trends have uniformly

higher RMSEs. The RMSE of the BHM model is 0.0612. The inferior out-of-sample fit among models with time trends (as in BHM)

is notable because BHM indicate their preference for quadratic time trends is partly due to in-sample prediction accuracy. As we

show in section 4.1.3, models that include parametric trends are excluded from model confidence sets, i.e., they are estimated

to be statistically inferior to models that exclude such trends, conditional on the forecast procedure. Hence, forecast CV results

illustrate that in-sample predictive accuracy can give a misleading view of out-of-sample validity.

Given the interest of a subset of the climate econometrics literature in understanding the temperature sensitivity of GDP and

GDP growth, it is striking that among models that exclude country time trends, RMSE is largely invariant to the exclusion of

temperature, or to inclusion of any of the temperature functions we model. For instance, among models without trends, RMSE

varies by less than 1 percent across temperature specifications holding other model choices constant. Similarly, model perfor-

mance is also insensitive to the inclusion or exclusion of temperature lags. The invariance of RMSE to temperature specification

is, perhaps, unsurprising given the multiple factors determining GDP and its growth and the relatively small share of variation

explained by temperature.

4.1.2. Backcast and K-fold CV

Results of backcast and K-fold CV are depicted in Figs. A7 and A8, respectively. Backcast and forecast CV are methodologically

similar in that both require extrapolation across five consecutive years of the test data. Results across CV methods are qualita-

43 Models that cannot be seen because their RMSEs exceed the point of truncation of the y-axis do not appear in any MCS.
44 RMSEs for these models exceed the top range depicted in Fig. 1 due to the truncation of the y-axis.
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Fig. 1. RMSE under Forecast CV (20 Year Estimation Window), by Specification. Year FE models (top) and Region-Year FE models (bottom). MCS models in blue and green

in top and bottom figures, respectively. Notes: This figure depicts RMSE under forecast CV for 800 models. Green dots indicate RMSE for region-year FE models appearing

in the Tmax, MCS under this CV approach. Blue dots are year FE models in the MCS. The red dot is the BHM specification, which does not appear in the MCS. Black dots

are the remaining models. Gray areas represent ±1.96 standard errors of the RMSE. For legibility, the y-axis is truncated at 0.12 (twice the sample standard deviation); all

models obscured by this truncation have very high RMSEs and accordingly do not appear in any MCS.
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tively similar, favoring models that exclude flexible parametric trends. RMSE increases in backcast CV as higher-order polyno-

mial trends are introduced. Regardless of other modeling assumptions, RMSE is minimized by excluding country trends. Like-

wise, regardless of other modeling assumptions, prediction error is least among models that include region-year fixed effects.

Among those models that exclude country-specific trends, RMSE varies from 0.0488 to 0.0515, or 81–85% of the sample standard

deviation of GDP growth (0.0603).

Like forecast CV, model performance assessed using backcast and K-fold CV is largely invariant to how temperature is mod-

eled or whether it is excluded. Holding other model specifications constant, RMSE varies across temperature functions by less

than 1%. Conditional on other model choices, RMSE is also insensitive to whether GDP growth or level effects are modeled, and

whether temperature lags are included or not.

Prediction errors across models in K-fold CV vary little, but best-performing models are similar to those identified by forecast

and backcast CV. Irrespective of other model characteristics, RMSE is minimized among models that include region-year fixed

effects and exclude parametric trends. It is insensitive to temperature or precipitation function specifications. Holding other

model characteristics constant, the RMSEs vary by less than 0.3% across temperature specifications. Among models that include

year fixed effects and not region-year fixed effects, RMSE declines as higher-order polynomial trends are added until a cubic

trend, which yields the largest RMSE irrespective of other model characteristics.

4.1.3. Model confidence sets

We estimate model confidence sets comprised of 60, 53, and 32 models for the forecast, backcast, and K-fold CV, respectively.

The MCS is analogous to a confidence interval on a parameter estimate in that it is assured to contain the best-performing

model at a given confidence level. Like the confidence interval on a parameter estimate, the greater size of the MCS reflects

greater uncertainty, i.e., the limits of information in the data from which to identify the best model. The fact that the size of the

MCS reflects the information content of available data makes the MCS procedure attractive relative to other tests for superior

predictive ability (Hansen et al. 2011).

The prediction errors of models retained in the MCS are indicated by blue or green dots in Fig. 1, A7, and A8. Blue dots in

Fig. 1 and A7 indicate the RMSEs of year fixed effects models of statistically superior performance. Green dots in the figures are

analogous indicators for models composed of region-year fixed effects. Because only one MCS is estimated for K-fold CV, the

RMSEs of models contained in the MCS are indicated by green dots. (The red dot in each figure indicates the BHM model.)

The MCSs identified by forecast CV RMSEs are exclusively comprised of models that exclude the parametric time trends

preferred by BHM. The MCSs, however, do not discern among temperature functional forms or growth and level effects. The

forecast MCSs contain models including all temperature and precipitation specifications, as well as models that specify growth

and GDP levels relationships. The MCSs selected by backcast CV RMSEs similarly exclude any parametric time trends and include

models specified by each temperature and precipitation function, as well as growth and levels models. The model preferred by

BHM is excluded from all MCSs. Models similar to DJO, which we term “DJO∗” and “DJO∗+Quad. Temp.“, are included in all

MCSs, as are some models that include temperature lags.45

4.1.4. Summary of CV results

We conclude the following from CV and MCS analyses:

1. Dozens of alternative models exhibit comparable predictive ability in cross validation. This leads to large sets of models

characterized by statistically indistinguishable predictive ability. The range of RMSEs for models included in the MCSs is

0.0497–0.0566.

2. GDP growth and levels models exhibit similar predictive ability, and we cannot identify with 95% confidence whether levels

or growth models have superior predictive performance. Neither can we determine with 95% confidence whether the most

predictive models include temperature lags or not.

3. We cannot preclude at the 95% confidence level that the most predictive model excludes temperature or adopts any of the

temperature functions we considered. The invariance of RMSE to temperature specification is, perhaps, unsurprising given

the multiple factors determining GDP and its growth and the relatively small share of variation explained by temperature.46

Model predictive ability is also invariant to the specification of the function relating precipitation to GDP or GDP growth.

4. Models that include parametric country-specific time trends, as in BHM, are excluded from model confidence sets derived

from forecast or backcast CV, and the model preferred by BHM is excluded from all MCSs.

45 DJO∗ includes a linear temperature function and region-year fixed effects. This adaptation of DJO excludes interactions with indicators of countries’ below-

median-income status in order to nest the model within the dimensions of the model space we defined. DJO∗+Quad replaces the linear temperature function

with a quadratic.
46 A linear function of temperature explains only 0.2% and 0.03% of sample variation in GDP and GDP growth, respectively, conditional on region-year and

country fixed effects. Even allowing for the non-linear effects of temperature, a flexible four-knot cubic spline of temperature explains only 0.9% and 0.4% of

GDP and GDP growth variation, respectively.
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4.2. Marginal effects of temperature

4.2.1. Overall marginal effects

Previous studies have identified statistically significant temperature effects on GDP or GDP growth within the specific models

chosen by the authors. Such findings account for sampling uncertainty, but they do not account for uncertainty over the correct

specification of the model relating economic aggregates to temperature. Given the number of models comprising our estimated

model confidence sets, we assess the significance of marginal temperature effects across those models comprising the union of

MCSs. We, thus, systematically assess the robustness of the findings in earlier studies rather than assessing the significance of

marginal temperature effects in select alternative models. We proceed by estimating 1000 bootstrap samples for each model in

the union of the MCSs, generating a distribution of estimated marginal temperature effects for each model.47 These distributions

are aggregated across models to yield a distribution of marginal temperature effects reflecting sample and model uncertainty.

From this distribution, confidence regions are reported for annual temperatures on the support of the historical record.

Fig. 2 reports the mean temperature marginal effects separately for growth and levels models, along with confidence regions.

The mean marginal effect is shown in black. The green-shaded region reflects a 50% confidence region, and each successive band

of shading reflects an expansion of the confidence level. A 95% confidence region, for instance, is given by the red-shaded bands

and the area between them.

For growth effects models, the top panel of Fig. 2 shows that the mean marginal effect is positive at temperatures below

13.4 ◦C, and negative thereafter. The monotonic and approximately linear decline in the marginal temperature effect character-

izes a quadratic temperature function with mean peak at 13.4 ◦C. However, the effect of historical temperature variation on GDP

growth is very imprecisely estimated and includes zero for all reported confidence regions and across all temperatures of the

support. This is true at even the 50% significance level, and is shown by the confidence regions spanning positive and negative

marginal effects in the top panel of Fig. 2.

Turning to the bottom panel of Fig. 2, the mean marginal effect of temperature on GDP levels declines nearly monotonically

from approximately a 1.5% gain to GDP per degree of warming at the coldest annual temperatures observed during our study

period, to an approximately 1.9% marginal decline in GDP at 30 ◦C. As above, the marginal effect exhibits a roughly linear decline,

characteristic of a quadratic temperature function with a mean peak at 11.8 ◦C, where the marginal effect crosses the axis. The

marginal effect of temperature on GDP levels is more precisely estimated than the effect on GDP growth, yet there is still a wide

range of temperatures for which statistically significant temperature effects are not identified at conventional levels of statistical

significance.

These results suggest there is far less certainty about the magnitude of marginal temperature effects on aggregate GDP than

some prior studies imply. Whereas other studies, such as BHM and DJO, have identified statistically significant growth effects

when accounting for sampling uncertainty alone, we have shown that the contribution of model uncertainty renders those

effects indistinguishable from zero at conventional levels of certainty, and points to effects on GDP levels as being more con-

fidently detected. The substantial model uncertainty is a consequence of the similar out-of-sample performance of alternative

models that, nevertheless, imply disparate marginal effects of temperature on GDP growth or levels.

4.2.2. Comparing levels and growth models

We further disaggregate the marginal effects shown in Fig. 2 into contemporaneous and lagged effects for those models

among the MCS that admit such lags in order to assess whether temperature exhibits an effect on growth, which persists, or a

transitory effect on GDP levels. Fig. 3 depicts for growth models the total marginal temperature effect, the contemporaneous

marginal temperature effect, and the lagged temperature marginal effect. The contemporaneous marginal effect (𝛽0) and the

lagged marginal effect (𝛽1 + 𝛽2 + 𝛽3 + 𝛽4) are shown to be of approximately equal magnitude but opposite sign, consis-

tent with transitory, level effects of temperature on GDP, rather than growth effects. This is consistent with the sign reversal

observed across contemporaneous and first-lag temperature effects in DJO and BHM. We do not identify statistically significant

marginal effects of three temperature lags across the temperature support, as shown in the bottom panel of the figure. The

contemporaneous effect of temperature is shown to be statistically significant at the 10% level for high and low temperatures,

as shown in the middle panel of the figure. The composite of lagged and contemporaneous temperature effects is statistically

indistinguishable from zero across the temperature support as shown in the top panel of the figure.

4.2.3. Implied optimal temperatures

Uncertainty over the magnitude of temperature marginal effects yields substantial uncertainty as to the optimal temperature

for production or economic growth using these aggregate economic measures. Model uncertainty in the optimal temperature

is reflected in Fig. 4, which depicts a histogram of the GDP-maximizing temperature implied by those models included in the

union of MCSs and characterized by an interior maximum on the temperature support. The shading and color of the histogram

indicate which fraction of models predicting each temperature optimum is characterized by growth or level effects and the

inclusion or exclusion of temperature and precipitation lags.

47 The bootstrap was implemented by sampling coefficients from the cluster-robust variance-covariance matrix (clustered by country and year).
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Fig. 2. Confidence regions of temperature marginal effects onΔ ln(GDP) (top) and ln(GDP) (bottom). Notes: Plotted are 50, 80, 90, and 95% confidence regions of temperature

marginal effects on GDP growth (top panel) and GDP levels (bottom panel). Confidence regions are determined by bootstrapped sampling 1000 times for each model

specification that appears in the union of model confidence sets.

As Fig. 4 shows, model uncertainty admits a wide range of GDP-maximizing temperature even among models determined to

be superior in the model selection procedure. While the central tendency of the estimates (mean and median) is in the range of

12–13.2 ◦C, these models imply a range of optimal temperatures of about 10 ◦C to greater than 20 ◦C. GDP growth models that

exclude lags exhibit the narrowest distribution of GDP-maximizing temperature: 15.2–15.8 ◦C. GDP growth models that include

lags imply considerably higher optimal temperatures than other models, ranging from 19.4 to 20.4 ◦C. The optimal temperatures

under levels models without lags range from 10.8 ◦C to 13.8 ◦C. The range of optimal temperatures is widest for levels models

that include lags: 10–15.4 ◦C.

The differences across models in estimated temperature optima imply considerable variation in projected climate change

impacts because the bulk of global economic production typically experiences temperatures near the mean and median of this

distribution: 58% of global GDP in 2010 derived from countries with temperatures between 10 ◦C and 15 ◦C. For instance,
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Fig. 3. Confidence regions of total, contemporaneous, and lagged temperature marginal effects, among MCS growth models with lags. Notes: Plotted are means and 50,

80, 90, and 95% confidence regions of total (top), contemporaneous (middle), and lagged (bottom) temperature marginal effects on GDP growth. Confidence regions are

determined by bootstrapped sampling 1000 times for each model specification that appears in the union of model confidence sets.

16



R.G. Newell, B.C. Prest and S.E. Sexton Journal of Environmental Economics and Management 108 (2021) 102445

Fig. 4. Histogram of GDP-maximizing Temperatures Among Models in Any MCS. Notes: This is a histogram of GDP-maximizing temperatures for models in the union of

MCSs that are characterized by an interior maximum over the support of temperature. This excludes all linear models, but it also excludes some growth models with lags

that are generally downward sloping over the temperature support; see Fig. A6.

average temperatures in the three largest economies in 2010—the United States, Japan, and China—were about 14 ◦C, above the

temperature peak estimated by BHM of 13 ◦C. Hence, these countries would be expected to suffer GDP losses from warming.

But these economies operate below the estimated “DJO∗+Quad” temperature peak of 15.4 ◦C, implying benefits from 2 ◦C of

warming. These three economies collectively accounted for over 40% of global GDP in 2010.

Sampling uncertainty is more substantial. The 95% confidence interval of the temperature optimum in the “DJO∗+Quad”

model, for instance, is 7.8–30 ◦C. We further assess the combined sample and model uncertainty by bootstrapping 1000 draws

for each model in the union of MCS.48 The 95% quantile interval of temperature optima extends beyond the support of the

historical record of annual average temperature.

4.3. Estimated GDP impact of climate change

As described in section 3.5, the parameter estimates from the 800 model we estimate are used to project economic impacts of

unmitigated warming. As in BHM, we project the impact of expected warming on global GDP by 2100 using the RCP8.5 climate

projection as a benchmark of unmitigated climate change and SSP5 for projections of baseline GDP and population growth.49

In addition to examining the variation in GDP impacts due to model uncertainty, we evaluate sampling uncertainty using a

bootstrap procedure for the subset of models appearing in any MCS and including non-linear temperature functions. We are,

thus, able to relate sampling uncertainty to model uncertainty and assess the variance in projected GDP losses due to both.50

Modeling Uncertainty. Table 2 shows the estimated damages for each model that incorporates a quadratic of precipitation

and excludes temperature lags. The top panel of the table reports projections generated by growth models; the bottom panel

shows projections of levels models. Growth models project a wide range of GDP impacts in 2100, whereas levels models project

a considerably narrower range of smaller impacts. The variation in estimated GDP impacts across models is due primarily to the

importance of the GDP-maximizing temperature level relative to the location of the world’s major economies. Small shifts in

the GDP-maximizing temperature can change whether GDP of a few major economies is estimated to benefit from or be harmed

48 The bootstrap procedure is described in section 4.3 under Sampling and Modeling Uncertainty. We report the 95% quantile range rather than standard errors

because the distribution of the peak is non-standard. For example, the peak of a quadratic, (
a

−2b
), has a fat-tailed and asymmetric distribution as the ratio of two

normally distributed random variables.
49 We abstract from modeling weather variability. Instead, following BHM, we project future temperatures as a deterministic function of the climate warming

projected by RCP8.5. In particular, temperature is assumed to evolve according to a constant annual increment to country-specific temperature means from 1980

to 2010, as explained in Section 3.4. As can be shown, weather variability contributes to additional variability of future GDP impacts of climate change among

non-linear growth models. (We are grateful to an anonymous reviewer for contributing this insight.) For growth models with non-linear temperature functions,

weather shocks interact with the effects of climate change, and this interaction effect has permanent consequences. For linear models, weather variability does

not interact with climate effects, and, thus, does not contribute to the variance of the climate effect. For models of GDP level effects, the consequences of weather

variability are not permanent.
50 Following BHM, we also abstract away from uncertainty in the baseline GDP projection. This likely understates the uncertainty in GDP impacts, which in

turn depend on uncertainty in economic growth. Indeed, Müller et al. (2019) demonstrate considerable uncertainty in baseline economic growth. We leave an

exploration of this to future research.
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Table 2

Estimated percentage effects of unmitigated warming on GDP by 2100 by model including quadratic of precipitation, No Lags.

by projected warming. Models that comprise the MCSs, denoted by (∗) in the table, exhibit a much narrower range of projected

impacts.

GDP losses are highly sensitive to modest changes in modeling assumptions of growth models, as shown in the top panel

of Table 2. Models that include year fixed effects all imply GDP losses by 2100. In contrast, models that include region-year

fixed effects but exclude time trends, i.e., those that minimize RMSE, all imply GDP gains by 2100. The BHM model predicts GDP

losses of 49%, greater than most models reported in the table.51 If the BHM specification were more saturated with fixed effects,

the associated loss would be 17% rather than 49%. If the BHM specification used the DJO controls for unobservable trends (i.e.,

51 In order to accommodate three temperature lags, our sample is necessarily reduced in size by 4%. Thus, whereas BHM estimate a 23% decline in GDP by

2100 across their sample, we estimate a 49% decline from their same model estimated on the marginally reduced sample. This is emblematic of the sampling

uncertainty that characterizes this econometric approach.
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Fig. 5. 2100 GDP Damage Estimates in Unmitigated Warming Scenario for GDP Growth Models (Top Panel) and GDP Levels Models (Bottom Panel) in Any MCS. Notes:

The stacked bars indicate models featuring linear versus non-linear temperature functions, and models with lags versus those without. As seen in the bottom panel, the

multi-modal nature of the distribution is driven by the linearity of the temperature functional form and the inclusion of lags.

region-year effects only) it would yield a modest GDP gain rather than a substantial GDP loss.52 The DJO-adapted model (DJO∗)

implies GDP gains of 22% by 2100, while the DJO-adapted model that includes a temperature quadratic (DJO∗ +Quad. Temp.)

implies gains of 6%.

In contrast to the growth models, nearly all levels-effect models (without lags) imply a narrow range of GDP losses equal

to 2.5% or less, as reported in the bottom panel of Table 2. None of the 64 levels-effect models shown in Table 2 (and only 20

of the 320 levels models that include temperature functions) project GDP gains. Across model dimensions shown in the table,

projected GDP losses are least among models that specify a linear temperature effect, and they are greatest among models the

specify temperature splines. A GDP level model that adopts the other model characteristics of BHM projects GDP losses of 1.9%

in 2100.

Fig. 5 shows the distribution of projected GDP impacts for all models included in the union of MCSs that specify a temperature

function. It plots the histogram of percentage changes in GDP by 2100 from 27 GDP growth models (top panel) and 55 GDP

levels models (bottom panel, note the different scale of the x-axis). In each panel, damages from models featuring linear and

non-linear temperature functions are distinguished, as are those that include temperature lags and those that do not. Across all

models in the union of MCSs specifying temperature functions, GDP impacts range from −80% to +59% without accounting for

sampling uncertainty. This variation is attributed to growth models that include temperature lags, as shown in the top panel of

Fig. 5.53,54 In contrast, and consistent with the subset of results depicted in Table 2, GDP level models predict a narrow range

of small GDP losses. The multi-modal distribution of projected losses among levels models is due to temperature specifications

and temperature lags. Models that include non-linear temperature specifications and exclude lags typically project global GDP

losses in the range of 1.5–2.5%, while those that include linear temperature functions project smaller losses. Non-linear GDP-

levels models that include temperature lags project a wider range of economic impacts than other levels models, including

losses of more than 5%.

Sampling and Modeling Uncertainty. Model and sampling uncertainty are separately compared for growth and levels mod-

52 Table A1 is the analog to Table 2 for models estimated over the same sample as BHM. It demonstrates more starkly the sensitivity of projected GDP damages

to model specification. For instance, growth models that exclude parametric time trends universally imply GDP gains from warming by 2100 whether year or

region-year fixed effects are included. Modest changes to the specifications of BHM and DJO generate large changes in GDP impact predictions. Simply adding a

cubic temperature term to BHM’s specification reduces the estimated GDP impacts by half (−11% versus −23%). Removing BHM’s country-specific time trends

reverses the sign of the impacts (+12%), and using region-year fixed effects also reverses the sign (+10%). Starting with DJO’s model and adding quadratic

temperature reverses the sign of impacts (+41%).
53 This is true despite many of them performing similarly well in cross validation. See Fig. 1 and A7.
54 The BHM model is not depicted in the figure because it is excluded from all MCSs. However, in this sample, that model predicts GDP losses of 49%, greater

than most models depicted in the figure and all such models that exclude temperature lags.
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els by considering temperature parameter estimates from bootstrapped samples for each model that appears in an MCS and

incorporates non-linear temperature functions.55 Bootstrap temperature coefficients are drawn 1000 times from the clustered

covariance matrix (clustered by country and year). Each set of temperature parameter estimates is used to project GDP losses in

2100, yielding a distribution of predicted global GDP impacts for each model in the union of model confidence sets.

These distributions are depicted in Fig. 6 for non-linear temperature models included in any MCS: the top panel shows distri-

butions of 25 growth models, and the bottom panel shows distributions of 49 levels models (note different scales of horizontal

axes). Each gray series depicts the distribution of GDP impacts for a distinct model in the union of the MCSs. Bolded blue curves

in each panel depict the aggregate distributions of GDP impacts across all bootstrap samples and all non-linear temperature

models in the union of the MCSs.

The top panel in Fig. 6 demonstrates considerable sampling uncertainty for models of GDP growth; individual model distri-

butions range from 80 to 100% losses to greater than 500% gains for some models.56 While the distribution of impacts across

models has a peak below zero, it is centered at gains of +13% (median) to +47% (mean) due to the rightward skewness of the

distribution. A small number of models, like that of BHM, are centered at losses of 50% or more, but most have substantial mass

on GDP gains, resulting in positive medians and means of around +10 to +50%, due to a right skew. Whereas BHM acknowledge

a 30% chance that future warming under RCP8.5 yields GDP gains, this likelihood is greater when accounting for model and

sampling uncertainty. Fifty-seven percent of the mass of the pooled distribution is above zero. The 95 percentile range across

these models and samples is −86% to +388%.

Sampling uncertainty is characterized by the average variance of GDP impact estimates holding models constant and varying

samples. It can be related to the magnitude of model uncertainty, characterized by average variance of impact estimates as

models vary and samples are held constant. The combined variance is the variance across all impact estimates from these

models and is shown in the blue curve of the top panel. Model uncertainty, as measured by the average standard deviation of

GDP impacts across these models, is equal to 83% of GDP. Sampling uncertainty is equal to 122% of GDP. Combined uncertainty

is equal to 142% of GDP. The magnitude of combined uncertainty demonstrates the limited guidance to policymakers afforded

by econometric specifications of the temperature-growth relationship.

The bottom panel in Fig. 6 shows less variation in predicted GDP impacts across bootstrap samples and across models in GDP

levels. For most of the distributions depicted, GDP impacts are centered around −1% to −3%. The distributions centered around

−5% are exclusively models with lags, as can be seen more clearly for the point estimates shown in Fig. 5. Ninety-five percent

of the mass of the pooled distribution falls in the interval (−9.1%,+2.0%). This range is driven in large part by models admitting

lags. The 95% range without those lag models is a tighter (−3.7%,−0.02%). The frequency of impacts worse than −3% GDP is

about 30%, and there is only a 8% frequency of positive GDP impacts. Again, this 8% frequency is driven by the larger uncertainty

associated with lag effect models; without these models, the frequency of positive GDP impacts is only 2.4%. Model uncertainty

among these models is equal to 2.3% of GDP, whereas sampling uncertainty is 1.9%. Combined uncertainty is equal to 2.7% of

GDP.

Among the models included in any MCS (including all models without regard to temperature functional form), the 95%

quantile ranges of GDP impacts accounting for sample and model uncertainty are −84% to +359% for growth effects models and

−8.5% to +1.8% for levels effects models. Even the narrowest MCS, based upon K-fold CV errors, admits considerable uncertainty

in impacts, as it includes some GDP growth models; among those 32 models, the 95% confidence interval on GDP impacts ranges

from −81% to +172%. This large range is, again, attributable to uncertainty about impacts in GDP growth models.

4.4. Temperature impacts by country income and sector

Rich vs. Poor Countries. BHM report that both poor and rich country GDP respond non-linearly to temperature.57 This suggests

climate change impacts on GDP are broader than those implied by DJO, who found negative impacts only on poor countries. We

assess the robustness of these findings to alternate model specifications by estimating separately for rich and poor countries

the marginal temperature responses from each model in the union of MCSs that include a temperature function. Means and

confidence intervals of these marginal responses are reported in Fig. 7 for each temperature in the support of our data. They are

reported separately for growth models (left panels) and levels models (right panels).

As shown in the top panels of the figure, the results do not identify a statistically and economically significant GDP growth

or level response to temperature in rich countries at any annual average temperature observed in the historical record. Even a

50% confidence interval includes zero effect in growth models (see top-left panel). At temperatures typical of large economies,

the 95% confidence interval extends from −1% to +2% of GDP at its narrowest point for levels models.

Among poor countries, the mean marginal growth effect of temperature exhibits a monotonic and approximately linear

decline across the temperature support, implying a quadratic temperature function. This relationship is similar to the one char-

acterizing the temperature marginal effect on aggregate GDP growth previously reported, suggesting poor country outcomes

55 Theory and micro-foundations suggest a preference for non-linear temperature functions even though these models do not uniformly perform better in cross

validation than models with linear temperature functions. By assessing uncertainty among only models with non-linear temperature functions, we constrain

model uncertainty, which is nevertheless shown to be immense.
56 The x-axis in the top panel is truncated at +500% GDP impacts, but the tail extends as high at +4700%.
57 Deryugina and Hsiang (2014) also find significant temperature effects on U.S. GDP.
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Fig. 6. GDP Impact Distributions for Unmitigated Warming in Non-Linear Models that Appear in Any Tmax, MCS, GDP Growth Models (Top) and GDP Levels Models

(Bottom). These are kernel densities of the bootstrapped GDP impacts for non-linear temperature models appearing in the Tmax, MCS under any of the three primary CV

approaches. There are 74 such models (25 growth and 49 levels). These distributions understate the full uncertainty in impacts because they assume no uncertainty in the

other inputs to the projection (i.e., forecasts in baseline economic growth, population, and temperature). In the top panel, the x-axis is truncated at +500 percent GDP for

legibility, obscuring less than 1.5 percent of the pooled mass. The levels models with central tendencies around −5 percent are lag models.

have an important influence on aggregate outcomes. However, the marginal temperature effect on poor country growth is

imprecisely estimated, and even an 80% confidence interval includes zero for any temperature. The mean marginal GDP level

effect among poor countries is negative across the temperature support, implying harms from warming at even the coldest

annual temperatures observed over the historical study period (see bottom-right panel). The marginal effect declines nearly

monotonically from −0.5% to −2.1% per degree of warming, and is more precisely estimated to be negative, particularly for

temperatures above 18 ◦C.

Agriculture vs. Non-Agriculture Sectors. BHM and DJO also conclude that agricultural and non-agricultural production growth

is affected by historical temperature shocks. However, taking both modeling and sampling uncertainty into account, we find

more mixed results. This is shown in Fig. 8, which separately reports the confidence region of temperature marginal effects

as in Fig. 7 for agricultural and non-agricultural production. The marginal growth effects of temperature are reported in the

left panels, while marginal GDP level effects are reported in right panels. The top panels of the figure report non-agricultural
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Fig. 7. Confidence regions of temperature marginal effects, Rich versus Poor Countries. Notes: Plotted are means and 50, 80, 90, and 95% confidence regions of temper-

ature marginal effects on GDP growth (left column) and GDP levels (right column) for rich countries (top row) and poor countries (bottom row). Confidence regions are

determined by bootstrapped sampling 1000 times for each model specification that appears in the union of model confidence sets.

production impacts, while the bottom panels report marginal effects for agricultural output.

The top panels show that the mean marginal temperature effect on both the growth and level of non-agricultural GDP is

very imprecisely estimated and is only distinguishable from zero for a 50% confidence interval at very high temperatures in the

levels effects model. Hence, we do not identify a statistically significant effect of temperature on non-agricultural production at

conventional levels of statistical confidence.

In contrast, the effect of temperature on agricultural GDP shows a more consistent pattern. As show in the bottom panels

of Fig. 8, the mean marginal temperature effect on the level and growth of agricultural output indicates a concave temperature

function with a peak at about 10 ◦C. The marginal effect declines monotonically and approximately linearly across the temper-

ature support in the growth effects model (bottom-left panel), but these effects are not statistically significant from zero across

the temperature support at conventional confidence levels.

We find stronger evidence of substantial temperature impacts on agricultural GDP levels, as shown in the bottom-right

panel of Fig. 8. The marginal mean effect is more steeply sloped than total GDP or any of the other disaggregated measures, and

is statistically distinguishable from zero at the 20% significance level for temperatures above 15 ◦C.
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Fig. 8. Confidence regions of temperature marginal effects, Agricultural versus Non-Agricultural GDP. Notes: Plotted are means and 50, 80, 90, and 95% confidence regions of

temperature marginal effects on GDP growth (left column) and GDP levels (right column) for non-agricultural GDP (top row) and agricultural GDP (bottom row). Confidence

regions are determined by bootstrapped sampling 1000 times for each model specification that appears in the union of model confidence sets.

5. Conclusion

In the absence of clear theoretical guidance on specific estimable forms for the aggregate GDP-temperature relationship, we

consider the implications of model uncertainty for market damages of climate change. Out-of-sample predictive accuracy is

assessed for 800 variants of prominent models that vary by specification of GDP growth or levels effects, as well as by specifica-

tion of temperature and precipitation functions and controls for unobserved trends. Cross validation is employed to determine

model prediction errors, which are used to ascertain the sets of models that have statistically significant superior performance.

Across a large subset of models, predictive accuracy is not significantly dependent on the functional form of temperature or its

exclusion.

Modeling uncertainty, uniquely estimated in this paper, is shown to rival sampling uncertainty. Growth models generate

considerably greater uncertainty of climate impacts than do levels models. For growth models with superior performance, i.e.,

those contained in any model confidence set (Hansen et al. 2011), the 95% confidence region of GDP impacts in 2100 is −84% to

+359%, reflecting considerable model and sampling uncertainty. Accounting for the uncertainty reflected in the set of superior

models, we do not identify a statistically significant marginal effect of temperature on global GDP growth.
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Though we cannot preclude at 95% confidence that a model relating temperature to GDP growth is superior, we identify

models relating temperature to GDP levels as more often being the most accurate in out-of-sample validation. Moreover, growth

models incorporating lagged temperature effects indicate that contemporaneous harm from positive temperature shocks are

offset in subsequent periods, indicative of temperature effects on GDP levels rather than growth.

Models relating temperature to GDP levels yield climate impact estimates that are far more certain. The best such models

imply GDP losses by 2100 of 1–3%, consistent with damage functions currently embedded in the major integrated assessment

models that underpin the U.S. social cost of carbon (National Academies of Sciences 2017; Nordhaus 2017; Rose et al. 2017;

National Research Council 2010). The 95% confidence range for GDP levels models in any model confidence set is −8.5% to

+1.8%. Hot temperatures are estimated to cause statistically significant losses to the level of poor country and agricultural GDP,

but not to rich-country and non-agricultural production.

While the climate change impacts estimated by GDP-levels models may appear modest, even a 1% loss to global GDP is equal

to $800 billion today and could be 5–12 times greater by 2100 amid 2–3% annual economic growth. Moreover, projected GDP

impacts based on past temperature fluctuations reflect only a component of potential welfare effects, excluding, for instance,

effects on non-market goods like environmental amenities and potential extreme events not reflected in the historical record.

As this analysis has demonstrated the sensitivity of estimated temperature impacts on GDP to both model and sampling

uncertainty, it suggests further research is warranted to improve understanding of the relationship between climate and pro-

duction, particularly at a disaggregated sectoral level. In the spirit of the robust literature on crop impacts of climate change,

future work should disaggregate annual temperature data to explore heterogeneous temperature sensitivity across seasons or

months of the year, as well as non-linearities in the effects of daily temperatures.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jeem.2021.102445.
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